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I. INTRODUCTION

Quantum error correction (QEC) is essential for fault-tolerant quantum computing, ensuring
that logical information remains protected from physical noise during the execution of quantum
algorithms. Traditional QEC strategies achieve this by redundantly encoding logical qubits across
many physical two-level systems (qubits), but this approach incurs significant hardware over-
head, making large-scale fault-tolerant quantum computing (FTQC) a daunting challenge. While
recent small-code demonstrations have made progress, they either operate above threshold, lack
scalability, or do not incorporate mid-circuit measurements [1–5].

An alternative paradigm is bosonic codes, which leverage the large Hilbert space of quan-
tum oscillators to perform error correction within a single physical mode, offering a potentially
more hardware-efficient path to FTQC [6]. Grid codes are a class of bosonic codes that encode
discrete-variable logical information in translationally invariant lattices in phase space [7]. They
are particularly promising for quantum error correction, as studies suggest that single-mode grid
codes effectively correct photon loss errors and outperform other single-mode bosonic codes [8, 9].
Experimental demonstrations have validated its error correction capabilities [10–13]. Notably, er-
ror correction above breakeven—where the encoded logical lifetime surpasses the bare oscillator
lifetime—has been achieved [11, 13], and autonomous quantum error correction has also been
demonstrated for single-mode grid codes [12].

A key challenge with grid code-encoded qubits is designing the system such that photon loss
remains the dominant error channel. In practice, experimental implementations face additional
complications, particularly due to auxiliary control systems (e.g., transmons), which can introduce
other sources of errors. Single-mode grid state encoding is particularly vulnerable to such auxiliary
errors, as errors occurring during the stabilizer protocol often directly generate logical errors. This
can lead to silent logical errors that remain undetected and uncorrected, limiting the effectiveness
of single-mode grid codes.

To make fault-tolerant quantum computing (FTQC) with grid codes viable, three strategies
have been proposed:
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• Concatenating grid qubits with outer error-correcting codes [14–17]

• Using noise-biased or error-transparent auxiliaries [18]

• Employing multimode grid codes [6, 7, 19–22]

The last approach leverages multiple bosonic modes to encode logical qubits, increasing robust-
ness against auxiliary-induced errors. With multimode grid encodings, it is possible to devise
codes in which auxiliary errors during stabilization move the state outside the logical space rather
than inducing silent logical errors. This allows error syndromes to be detected via measurements,
making error correction more effective.

A notable example is the Tesseract code, a two-mode grid code that introduces emergent fea-
tures beyond single-mode implementations. One of its key advantages is the isthmus property,
which reduces the impact of auxiliary decay errors [20]. Unlike standard single-mode grid code
implementations, where auxiliary decay can lead to undetected logical errors, the Tesseract code
ensures that such errors leave detectable signatures, allowing them to be identified and mitigated
through post-processing. This makes multimode grid codes a promising pathway toward fault-
tolerant quantum computing [6].

In this work, we present the first experimental realization of a multimode grid code, demon-
strating its enhanced features by leveragingmid-circuitmeasurement outcomes to suppress logical
decay in a hardware-efficient architecture [6].

II. MULTIMODE TOOLBOX: HARDWARE AND ENTANGLING GATE

Building on theoretical proposals, we realized a full in-house demonstration of multimode grid
code state preparation and quantum error correction, bridging concept to implementation within
a scalable hardware platform.

A. Multimode Hardware Platform

The Tesseract code was implemented in a single-unit prototype, designed as a foundational
building block for a logical qubit in a scalable multimode architecture, as outlined in Ref. [6] and
briefly sketched in Fig. 1(a). This prototype demonstrates how a single unit can encode and pro-
cess logical information while remaining compatible with a larger, extensible quantum computing
platform.
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FIG. 1. (a) Schematic of the FTQC architecture of Ref. [6] based on interconnected multimode units, in
which each multimode unit is an encoded logical qubit. (b) Schematic of the single-unit multimode hard-
ware platform. A single auxiliary transmon is dispersively coupled to the two normal oscillator modes of
the double-post cavity, as well as a on-chip readout and filter resonators. (c) Photo of a two-mode proto-
type.

Each unit consists of a superconductingmultimode 3D cavity, where two oscillator modes are
controlled by a single auxiliary transmon qubit [Fig. 1(b,c)]. The encoded multimode grid code
resides within these two oscillator modes inside the cavity, leveraging their large Hilbert space
for quantum information storage and error correction. This platform enables universal control
over multiple bosonic modes without additional hardware overhead, making it a scalable approach
to multimode quantum error correction [6]. A readout resonator coupled to the auxiliary qubit
allows for logical measurements across both modes.

B. Multimode Echoed Conditional Displacement Gate

The Echoed Conditional Displacement (ECD) gate is a fundamental tool for controlling grid
code qubits [10, 23]. Originally developed for single-mode systems, this gate extends naturally to
multimode architectures [Fig. 2], enabling entangling operations between bosonic modes without
additional complexity.

Themultimode ECD entangling gate offers several key advantages:

• Limited additional calibration required compared to the single-mode implementation.

• Same fidelity and duration as single-mode ECD gates for equivalent amplitudes.

• No χ-matching required, significantly simplifying implementation.
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FIG. 2. (a) Single-mode echoed conditional displacement β composed of displacements±α, auxiliary echo
π pulse, free evolution under a static dispersive interaction, and an auxiliary virtual Z gate of phase φ. The
last displacement pulse is scaled by a factor ζ to correct for displacement errors. (b) Extension tomultimode
echoed conditional displacements β⃗ = (β1, β2, . . . , βN ), in which the size of the displacements αn are used
to achieve a conditional displacements of amplitude βn.

This efficientmultimode entangling operation plays a crucial role in enabling logical operations for
multimode bosonic error correction, making it a powerful tool for scalable quantum computing.

III. MULTIMODE GRID CODE: STATE PREPARATION AND ERROR CORRECTION

A. State Preparation

The Tesseract code extends single-mode grid encoding by distributing logical information
across two bosonic modes. Logical states | ± Z̄⟩ correspond to two unentangled single-mode rect-
angular grid states, one in each mode. In contrast, logical states | ± X̄⟩ and | ± Ȳ ⟩ are prepared
by entangling these single-mode grid states. More generally, a sequence of auxiliary rotations and
two-mode ECD gates is sufficient to prepare any logical state [Fig. 3(a)].

Figure 3(e-v) presents experimentally measured two-dimensional slices of the six logical states
of the Tesseract code. These slices intersect all Pauli and stabilizer operators of the code [Fig. 3(b-
d)], providing a complete characterization of the logical states. The prepared logical states achieve
a fidelity of FL = 0.86 for ∆ = 0.45, corresponding to an average of two photons per mode.
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FIG. 3. (a) State preparation protocol for the Tesseract grid code. Two-dimensional planes that includes
(b) all Pauli operators X̂ , Ŷ , and Ẑ, (c) single-mode stabilizer operators Ŝ1 and Ŝ3, and (d) two-mode sta-
bilizers Ŝ2 and Ŝ4. (e-v) Experimental 2D slices of the real part of the joint characteristic function C(β1, β2)

for the six logical Pauli states (e-j) | ± X̄⟩, (k-p) | ± Ȳ ⟩, and (q-v) | ± Z̄⟩ of the Tesseract qubit with finite-
energy parameter ∆ = 0.45.

B. Autonomous Quantum Error Correction

Now thatwe have demonstrated, for the first time, the successful state preparation of the Tesser-
act code, we turn to the next crucial step: implementing quantum error correction to protect the
encoded logical information.

We implemented a fully autonomous QEC protocol for the Tesseract logical qubit, illustrated in
Fig. 4(a). This corresponds to the two-mode generalization of the sBs protocol [20, 24], incorporat-
ing a fully autonomous auxiliary reset as demonstrated in Ref. [12]. Mid-circuit measurements

are integrated into the protocol, and their impact on QEC performance is examined in the next
section.
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FIG. 4. (a) Complete protocol used to prepare, correct, and measure Tesseract logical states. The QEC
protocol, corresponding to the two-mode sBs protocol, is composed of auxiliary rotations Rn and two-
mode conditional displacements of amplitudes (β1,n, β2,n). An optional mid-circuit measurement can be
performed before the autonomous auxiliary reset. Logical measurements are performed with either an
infinite- or finite-energy protocol [24]. (b) Logical fidelity as a function of the number of QEC rounds in
the absence of mid-circuit measurements, indicating a logical error per round εsBs = 2.1(1)× 10−2.

The performance of autonomous QEC for the multimode grid code is evaluated in the restless

regime, where the idle time is set to zero to minimize errors per QEC cycle. In this configuration,
each QEC round has a duration of 2.77µs. The logical fidelity is analyzed as a function of the
number of QEC rounds, as shown in Fig. 4(b). In this regime, we measure the logical error per
round to be εsBs = 2.1(1)× 10−2.

C. Mid-Circuit Measurements

Mid-circuit measurements are a standard feature of quantum error correction, allowing error
syndromes to be extracted and processed by a decoder to correct logical errors in real time. In
our implementation, mid-circuit measurements are integrated into the autonomous sBs QEC pro-
tocol [Fig. 4(a)] to extract confidence information about the multimode grid code logical qubit.
Importantly, the protocol remains fully autonomous, as the auxiliary qubit is reset after each mea-
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FIG. 5. (a) Example ofmid-circuitmeasurement outcomes for 16QEC roundswith green (yellow) indicated
the auxiliary ground (excited) state. In the full erasure limit, a valid shot, indicated in blue, is one where all
measurements outcomes correspond to the auxiliary ground state. (b) Survival probability as a function of
the number of QEC rounds. The line indicates an exponential decay from which the rejection probability
prej = 12.6(2)% is obtained. (c) Increase of logical error as a function of the number of QEC rounds without
erasure (burgundy) andwith full erasure (teal). The full line corresponds to the exponential fit fromwhich
the logical error per round εsBs = 3.5(3)×10−2 is obtained. The horizontal dashed line indicate the absence
of an increase of the logical error.

surement, ensuring continuous operation without active feedback.
As shown in Fig. 5(c), when mid-circuit measurement outcomes are not used, the logical er-

ror per round is measured to be εsBs = 3.5(3) × 10−2. This is comparable to the logical error
rate observed in the protocol without mid-circuit measurements [Fig. 4(b)], taking into account
the increased duration of each QEC cycle from 2.77µs to 3.73µs. These results indicate that the
inclusion of mid-circuit measurements does not significantly degrade QEC performance.

D. Leveraging Confidence Information for Erasure-Based Error Suppression

Beyond monitoring the logical qubit through end-of-the-line measurements only, the confi-
dence information extracted frommid-circuit measurements can be actively used to improve error
correction. By identifying and discarding potentially flagged realizations, we can achieve stronger
logical protection—an approach known as erasure-based error suppression.

As illustrated in Fig. 5(a), in the full erasure limit, measurement shots with at least one flagged
error are discarded, leading to a rejection probability of 12.6% [Fig. 5(b)]. This rejection proba-
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bility increases the experimental cost of extending beyond the 32 QEC rounds explored here. In
this regime, the survival probability of a given experimental realization is 1.3%. The fidelity of
the mid-circuit measurements used in this implementation, approximately 95%, suggests room
for improvement in future iterations.

Unlike single-mode grid codes, where displacements of half a lattice spacing remain unde-
tected, the Tesseract code identifies these errors with high probability [6], enabling significantly
improved error suppression. In the full erasure limit, we achieve no observable logical decay over

32 QEC rounds, underscoring the effectiveness of this approach [Fig. 5(c)]. While intermediate
erasure strategies could help reduce the rejection probability, their development remains a subject
for ongoing work.

These results stand in stark contrast to those of single-mode grid codes. In Ref. [11], applying
the full erasure limit reduced the logical error per round by only a factor of 6.3. In contrast, in our
implementation, no statistically resolvable loss of logical information is observed after 32 QEC
rounds.

IV. CONCLUSION

Our experimental realization of the Tesseract code demonstrates howmultimode bosonic codes
introduce emergent features that go beyond single-mode implementations. In addition to increas-
ing the number of logical qubits, multimode grid codes provide a complementary scaling axis

by increasing the number of modes per logical qubit. This expanded encoding strategy enhances
error correction capabilities and opens new avenues for fault-tolerant quantum computing. These
features include:

• The isthmus property, which reduces the impact of auxiliary decay errors.

• The suppression of silent errors, leading to enhanced logical lifetimes.

• The ability to extract confidence information, improving error detection and correction
strategies.

Unlike previous grid-state implementations, the Tesseract code ensures that a single auxil-

iary decay cannot cause undetected logical errors, significantly enhancing fault tolerance. These
advancements mark an important milestone toward scalable, hardware-efficient quantum error



9

correction. This work aligns with Nord Quantique’s roadmap toward achieving scalable fault-

tolerant quantum computing using hardware-efficient bosonic codes.
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